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Consldered is the action of a rigid die on an elastic layer of thickness 

h resting on a rigid foundation. A method is presented for obtaining an 
approxibatr rolution to the a&ion of a die on an elastic layer, based 
on the known solution for the action of a die on an elastic half-space. 
The derived solution is valid for sufficiently large h and is given in 

the form of a series in powers of h-‘. Specific computing forleulas are 

obtained for a die of elliptic plan form. 

1. Statement of problem. Let a rigid die in the form of a cylin- 
drical body with cross section 52 and foundation surface z' = f(~'~ y',) 
penetrate into an elastic layer resting on a rigid foundation (Fig. 1). 

FIG. 1. 

‘l’he die is subjected to a force P acting along the z-axis, and to 
moments ML and MY relative to the axes of the coordinates x and y. 

Let us assume that the magnitude of the force and the smments is such 
that the region of contact for the die and the layer coincides with s1. 
Furthermore, m asswse that there are no frictional forces between the 
layer and the die, as well as between the layer and the foundation, and 
that outside the die the layer is not loaded. Under such asswaptions 
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the problem is reduced to the solution of the 
theory of elasticity subject to the following 

of finite thickness 463 

basic equations of the 
bouudary conditions: 

.T 

- 0, ‘ZX - T,z, = 0, a, = 0 outside the region a for z = tr (1.1) 

w =: - 3 (r, y) = - [6 + GCX + By - f(z, y)] in the region St (1.2) 

r -0, &2.X - 58 - - 0, V=O for 2 = 0 (1.3) 

Displacements and stresses vanish for (x, y) + 00. Here 6 is the dis- 
placemeut of the die under the action of the force P, and a, @ define 
the rotation angles of the die about they- and t-axes, respectively, due 
to the moments MY and MS. Let us define the pressure between the layer 
and the die by 

se-7 y) = - Qz in the region (1 for z = h (1.4) 

Note that in accordauce with the physics of the problem q(x, y 1 > 0 
and S(r, y) > 0 in $2 sad also that the pressure q(x, y) is associated by 
the kuown relations of statics with the force and the moments acting cm 
the die: 

Asswne at first that the pressure qb, y) betweeu the die and the 
layer is hnom. lhen we obtain the following relationships from [ 1 f 
Chap. 3, Sect. 5, where the problem of compression of an elastic layer 
resting on a smooth rigid foundation and subject to a distributed normal 
loading p(x, y) on its upper surface is considered: 

A (yh) = 2yh + sh 2yn 

Here Q(a, @) is the Fourier transform of the function p(x, y) = 
-I ozlZeJir i.e. 
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Formulas (I.61 are such that fox any fiction QG, @I, the first two 
bonds conditions (1.I) and the boldly conditions (1.3) are satisfied, 
as can be easily determined. Utilizing the third condition (1.1) and 
equality f1.41, we express t 2.7) in the form 

Finally, condition (1.2) will be satisfied if the function Q&x, /3) is 
dete~ined from the equation 

Substituting Q&x, (3) from (1.9) into Cl.101, we 
the dete~inst~on of the f~etion q(x, y) from the 
the first kind 

y) fn Ibe region a (I .lO) 

reduce the problem to 
integral elation of 

Noting that 
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00 

K,= ]imK = 
55 

Ci[a(r-S)+!W-701 dadB = 
27 v(N2;(Y-?)2 

(1.13) 

h- -_oo 

we shall express (1.11) in the form 

ss q (5. r) Wy 
s1 

_ =2xA6(s, Y)--1\\q(E, r)(K-KK,)dEdq (1.14) 
1/b - o2 + (Y - 1J2 x ci 

where 
co 

K-Km= 
,-4yh _ 2y/Le2Yh __ +9,l’ 

7 (4yK2Y” + 1 - ,_4Y’L) 
_ &b(r---S)+P(u-?)I d@j (1.15) 

Having determined q(n, y) from Equation (1.14) we will find the rela- 

tionships between the quantities P and 6, M and a, M and j3 from the 

relations (1.5), and the expression for theYfunction ‘Q(a, 6) according 

to Formula (1.9); then by (1.6) and the analogous formulas for u, II, ~7%' 

ayandr in [l 1, we shall find the displacements and stresses in the 
layer. 

XY 

2. Transformation of kernel K - K 00. Expanding the fraction 

under the double integral in (1.15) into a series of powers Z'vh = t 

we obtain 

tz-27ht-t 
y (4yht + 1 - P) 

= + (A, - n,r + A,P - A,13 + . . .) 

t2- 2yht- t z (4@ + 1 - t")(n, - A& -j- A# - A313 _I- . . .) 

Fquating the coefficients of equal powers of t we have 

A,, = 0, A, = 1 $- 2111, A, z 1 + 4yIr -+ 8r2h3 (2.1) 

A, = A,_, -t_ 4yhA n--,, n=3, 4,... (2.2) 

bet us denote the coefficients in A, of (yh)’ by Aki then 

e-4Yfr _ 2.,he-2YlL _ e--2YlL 

4yhe-2Y” + 1 - e-4y” 

The coefficients Aki are determined by the relations 
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40 = 0, A,r+,. o = 1 

A 2r+1.2s= (‘&(;$! P 

A (2r+f)(r +~PpS1 
*r+1* 2s+1 = (2.9 + I)! (r __s)! 

(s%oo, ;, ,“,: .:, r 
9 t 9 . > (2.4) 

4 (r + s + I)! 
- 2r+2* *$+I = (23 + i)! (r -s)! 

p+* 

A nr+*. 2s+2 = 
(2~ + 2) V + s + I)! 

(2s +- 2)! (r - s)! 
24s+3 

Utilizing the expansion 

and Formula (2.31, we will have 

Evaluating the integrals in (2.6) we will find 

c 277+l, 2n - - Czm. 2n+1 = C2tn+1, 2n+1 = 0, k,. 211 = h2mzn+l I’m (2.7) 

Here (2.8) 

rmn = 
(-- l)rnfn+l (2nt + 2n)! 

(m + ny ml TLf 24m+an+1 . . . 

Substituting expressions Aki from Formulas (2.4) and denoting m+n=p, 

we reduce JY’,,m!n! = r, to 

rP = jJ2:$!:8 i { $-p-1- *) 
(r+s)!(2p+2s)! 

r=o 5=0 
(a)! (r - s)! (r -j- l/2) 2p+2s + ’ 

+ 2+ .fl > 

(r + s f I)! (2p + 2s + I)! 

(2s+1)!(I--)!(r+l)2p+284* 1 + (2P)! 

(r +- 1p+1 
(2.9) 
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Ccwnputations yield 

rue = - 0.5838 -& 0.000~) I‘,, = r,, = 0.1977 * 0.000~ (2. lo) 

Substituting Can from Formulas (2.7) into (2.51, we have 

(2.11) 

3. Solution of EIquation (1.14). Substituting the expression 
(2.11) into (1.14) we obtain 

It is easy to show that the series (2.11) converges to K- K, for any 
X- 6 , y - rj snd for h > d/d 2. 

‘Ihe convergence of the series is not deteriorated by partial integra- 
tion, therefore Equation (3.1) is valid at least for 

We shall search for q([, 7~) in the form 

Q (E, $I z 5 Qi (et 3) + 
i=O 

(3.2) 

Substituting q@, ‘11 from (3.2) into (3.1) and equating the texms of 
like powers of h”, we obtain the integral equations 

(3.3) 

(3.4) 
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Let us assume now that we know how to solve the problem for the die 
on an elastic half-space. lhis means that we can obtain q,(t, ~1 from 
Equation (3.3). Substituting into the right-hand side of Equation (3.4), 
we will obtain an integral equation of the type (3.3) which consequently 
yields ql([, ~1 etc. 

Note that the kernel K(x - 6, y - 9, h) in Equation (l.11) is sym- 
metric with respect to the variables x, y and 4, q. We can then general- 
ize Equations (2) given in [3 1. 

Namely, if the solution is known for the action of a flat die with 

the region of contact 61 on an elastic layer of finite depth, i.e. we 
know the solution 

Wh 9) = Qs (5, Y) + aq, (x, Y) + fk7p (4 Y> 
of the equation 

(3.8) 

!i qpl(S, q) K (z - 5, y - q, h) dEdq = 2r2 A (6 + QJ: + By) (3.9) 
i-l 

then the force and the moments acting on the die with an arbitrary found- 
ation and the same region of contact 0 are expressed by formulas 

P = 1 qs(r, y) 6(x, j/P&/i lu,= \ qlx 6, Y) 6 (T y)drdy 
n h 

Jlx= i qa (r, y) 6 (.r, ?~)d.rdy (Xl(l) 

4. Solution of the problem for a flat elliptic die. J-et us 
solve the problem of the action of an elliptic flat die on a layer of 
finite depth by means of the method presented above.* 

First of all, we give the solution for the elliptic die on an elastic 
half-space obtained by Galin (see 12 I, Chap. 2, Sect. 8) and at the 
same time correct an error which occurred in this work. 

Following Galin, we will write the expression for the potential of a 
simple layer W(x, y, z), located on the surface of the ellipsoid p = K: 

l The solution by the following method can also be obtained for a non- 

plane elliptic die. 
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w= 1 73 Zk$l Harmonic func- 

1 W, (2, Zj, Z)= 2 2 akrnrs Fkm(p)Ekm((J)EknL (v)(,h?&,c%$!t 

I k=o ?n=l vanishing at (~3 

At the surface of the ellipsoid 

11 2k-tl 

w (x, y , z) jp=x= -bv, IQ-= w, jp=w== 2 x AkmEkm(x) Ek”’ (I*) Ekm 6’) = 
k=O m=1 

= 2nAQ,(x, Y, 4 (4.2) 

where Q&, y, z) is a polynomial of order n, even on z; ps CL, v are 
ellipsoidal coordinates connected with right-angle relations 

lax2 =: dp”pV 

(1 - I”) Py2= u2 (p”- 1yp2- Z”)(P- v”) 

(i - 12) 22, d (p”- 1)(1 - pZ)(1 - 9) 
(O,<v”-<P, P<\(pfl, f<p~<cO) 

(4.3) 

Here EkR(p) and Fk (m)(p) are Lam& functions of the first and second 
kind, * whereby 

(4.4) 

F/?(p) = Ekm(p)+im(& -20 forp+ro 

Now let us write the expression for the density of the potential for 
the simple layer located on the surface of the ellipsoid p = K: 

(4.5) 

Substituting expressions W, and Wz from (4.1) into (4.5) and trans- 
forming we obtain 

* For the theory of Lame functions see [4 I Chap, 23; [ 2 1 Chap, 2, 
Sects. 2, 8, 9; [ 1 1 Chap. 5, Sect. 8; 15 3 Chap. 6, Sects. 184-186. 
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Q ix* Y, z) = - 

(4.6) 

x 
p zzc 

Substituting 

I$P (41’=- 1 

[Ekm (K)l*f(~*- P)(x$-- 1) ’ 
an=Hp=a (Pa- laPa- v*) 
aP (P8-- 9tp*- $1 

we reduce (4.6) to f4.7) 

n Pkfl 

’ “’ ” ” = 
1 Lz: 2 Ak.1 

E, m (r) B, m (-4 
&Cl2 v/t,'-- p*)(K'-- V2) kc0 m=1 E,m(4$~mW (4.8) 

bet K go to unity, then z -f 0 and the ellipsoid p = K degenerates 

into an elliptic disc on the surface z = 0, the semiaxes of which are a 
andb=a+l- 1’. ‘lhus, at the surface of the elliptic disc the poten- 

tial W becomes 

n 2k+1 

cv (x, y, 0) = 2 2 A,mE,m(1)Ekm(t~)EIS”(v)=2nAQ,(s, ~9 O)=~~AJ’~S,Y) 
k=O 1n=1 

Note that 
(4.9) 

(4.10) 

Letting, now, K go to unity in Expression (4.8) and multiplying the 
result by two, we will find the density of the potential of a simple 
layer located on the elliptic disc: 

For the particular case 

and using the theory of L& functions we can obtain 

(4.9) 

from (4.11) and 
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1 

q-(z, y)= $(1-$-~;)~{&++((Aaa+Bb”)]+ 

clxl~ 
+ K(Z)-- E(l) + 

B?P 
E (1) - (I- 1”)K(1) - 

(4.12) 

Thus, Formula (4.12) yields the solution of the equation 

to which is reduced the problem of the action of a die on an elastic 

half-space for the case when Sk, y) = P,(x, y) and 62 is an ellipse with 

semiaxes a and b. 

We pass now to the solution of the action of a flat elliptic die on 

an elastic layer of finite thickness h. For a flat die f(z, y) = 0 and 

6(x, y) = 6 + u x + /3 y . Therefore, assuming A = 

we? obtain the solution of Equation (3.3) : 

-- 
Qo(z.c, y) = g (I-&$-) :~~ axZ2 

+ K(L)- E(l) 

Substituting the expression obtained for q0 
of Equation (3.4) we will obtain 

B = 0 in Formula (4.121, 

wa + E (1) - (1 - lZ)K{l) I 
into the right-hand 

(4.13) 

side 

s ql(E> 1) dE d? 
* 1/(-w+(Y - ?Y 

and from this, using (4.12) and assuming A = B = a = p = 0, we will find 

(4.14) 

Analogously, from Equation (3.51, we determine 

Substituting now the 
arranging we obtain 

3) = (4.15) 

expressions for qor ql, q2 into (3.6) and re- 
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s qs (E, 7i) 4 dv 
$.) v/(x - wt-(Y-r)2 

= 2xA I&3+ a3z + 133~ - A3 C+i- Y’)I 

Here 

6 __ _ x3r003a3E ~ -2rlosn @2+ b2), 4Floa12a3 
3 

IK(l)P 3K (0 a3 = 3[K(1)-q1)] 

p3= 
4rlofU2ab2 

3 [E (I)- (1- P)K (l)] ’ 
A 

3 
= Xl&a 

-x-g- 

Using Formula (4.12) and in it letting A = B we find 

- 3 [E(Z) - (I- P)K(1)]3 y + $&g (o.- gf”;i-_)l, jy (l)] % 
2 a, 

(4.16) 

Analogously, from Equation (3.7) we determine 

1 -- 

% (XT Y) = b [K (412 
4AErod I ;: ?/ba,) 2 [ 4roo3 I 4rlo (2 - 12) + 

( [K (01” 3K (1) 

(etc. l(4.17) 

And so we have found the first four tens of series (3.2). 

The obtained approximate expression for qh, y) will have the form 

where 

1 

q&(1‘, y) =- & (l- fi- - ;l-) 2 [R (II) + s (A, CL?, ?/)I (4.18) 

1 -- 2 

9a (x7 Y) = 
A&J 2 

b [E(l) - (1 - P)K(l)] i I’- zz- - !6 
’ To(h) (4.40) 
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~u$r,~z*(~ - P) 
(4.22) 

'@)= '+ 3h3[Efl)-(tl- 12)K (1)] -l-o(+) 

We will determine the relations between P and 6, Mu and a, if, and j3 
according to ( 1.5) : 

(4.23) 

Rewriting, now, Formulas (3.10), 
(4.18) and 14.19) 

and s~stituting qs, & and qp from 

P--L 
\ bK (4 iz 

IR (4 + 8 (k x2, y2)] 6 (x, y) (1 - $ - $)-‘dxdy 
I 

Al2 
hf,= b i,u (1) - e (l)] T, (h)f $8 (x, y) (1 - $ - $-)-+drdy 

iz 

A12 
Mx= b[E(Z)-(1--Z2)K(l)] ~ T,(h) \ y6 (x, y) (1- $- - $-dxdg 

(4W 

Formulas (4.24) permit the determination of the force and moments 
acting on any non-plane elliptic die. Fox h = 00 we have R -s T, = T = 
S = 0, and Formulas (4.24) become the known formulas obtained by &! 

1, 
lin 

(IZjl c3-q. 2, sect. 9). 



R fhl 
1/f - Is K (1) 

=A+B; 

laT, (h) 

v’si - 12 [K(1)- E fl)] 
=X- 

Of 

in 

(5.4) 

Here the coefficients A, B, . . . , N depend only on the eccentricity 1 
the elliptic region of contact, 

‘Ilie table below ‘ves the numerical values of these eccentricities I 
the region 0 < 1 !Y c; 0.99. ‘ihe intermediate values of ecci?ntricities 

t can be obtained by interpolation. After determination of the coeffi- 
cients for a given value of 1, the computation of stress qk y) accord- 
ing to (5.1) for various values of x and y in the region - a 4 x c u, 
- 6 < y < b is not difficult. 

The last colunm of the table gives the smallest values of the ratio 
h/o for which Formula (5.1) is still valid. obese smallest values are 
determined for the case a = /3 = 0 as follows. Let us introduce the nota- 

tion 

and determine the quantities 

h x=0= 
S-0 

(5.5) 

t5.6) 
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h 
“yzi = lim 

I Q” (1. 0) - Q3 (x3 0) I I()() y, = 
$,G+HIlOO% 

P(x* 0) 
(5.8) 

x-to. 

It is easily seen from the table that 

1’ 

0 
0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.8: 
0.9 
0.9: 
0.9! 

1’ 

0 
0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.8! 
0.9 
0.9: 
0.9! 

i 
i - 11 

1.0 

1.1111 
1.25 
1.4286 
1.6667 
2.0 
2.5 
3.3333 
5.0 
6.6667 

10.0 
20.0 

100.0 

G 

0.1943 -0.4165 -0.4765 1.2732 0.4273 
0.1794 -0.4523 -0.4767 1.2905 0.4164 
0.1638 -0.4272 -0.4776 1.3108 0.4051 
0.1473 -0.4011 -0.4792 1.3353 0.3932 
0.1298 -0.3738 -0.4821 1.3657 0.3808 
0.1112 -0.3450 -0.4867 1.4046 0.3677 
0.09112 -0.3143 -0.4941 1.4570 0.3539 
0.06905 -0.2811 -0.5065 1.5330 0.3393 
0.04400 -0.2442 -0.5295 1.6583 0.3242 
0.02965 -0.2236 -0.5497 1.7619 0.3169 
0.01311 -0.2010 -0.5840 1.9317 0.3111 

-0.008116 -0.1753’ -0.6596 2.2992 0.3116 
-0.04112 -0.1559 -0.9406 3.6945 0.3598 

- 

- 

- 

- 

A B c D E F 

1.0 0.6366 0.4732 0.3517 0.4751 -0.6410 -0.6410 
0.9487 0.6537 0.4134 0.3428 0.4508 -0.6246 -0.6583 
0.8944 0.6737 0.4739 0.3334 0.4254 -0.6072 -0.6788 
0.8367 0.6974 0.4751 0.3237 0.3985 -0.5888 -0.7034 
0.7746 0.7263 0.4771 0.3134 0.3700 -0.5691 -0.7339 
0.7071 0.7628 0.4803 0.3025 0.3393 -0.5479 -0.7728 
0.6325 0.8110 0.4857 0.2909 0.3057 -0.5249 -0.8250 
0.5477 0.8797 0.4949 0.2784 0.2680 -0.4997 -0.9004 
0.4412 0.9906 0.5124 0.2651 0.2239 -0.4720 -1.0236 
0.3873 1.0808 0.5282 0.2582 0.1978 -0.4576 -1 .I248 
0.3162 1.2266 0.5555 0.2516 0.1669 -0.4438 -1.2895 
0.2236 1.5377 0.6173 0.2478 0.1261 -0.4367 -1.6429 
0.1 2.7059 0.8549 0.2701 0.06478 -0.4934 -2.9772 

TABLE 

-- 

II j 1 / K j L 

- 

- 

I 
M N 

h 
a 

1.2732 0.4273 1.52 
1.3249 0.3951 1.50 
1.3860 0.3623 1.48 
1.4597 0.3290 1.46 
1.5513 0.2948 1.44 
1.6693 0 * 2597 1.41 
1.8293 0.2232 1.38 
2.0644 0.1846 1.34 
2.4604 0.1427 1.23 
2.7956 0.1197 1.26 
3.3603 0.09412 1.22 
4.6429 0.06359 1.16 

10.2120 0.0269: 1.N 

(5.9) 
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Now, the smallest permissible value of the ratio h/u is determined 
from the condition 

i:e: in such a way that the transfer from q3(x, y) to q”(x, y) would not 
alter the quantity q3(x, y) by more than 5% for all (x, y)CQ. 
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