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Considered is the action of a rigid die on an elastic layer of thickness
h resting on a rigid foundation. A method is presented for obtaining an
approximate solution to the action of a die on an elastic layer, based
on the known solution for the action of a die on an elastic half-space.
The derived solution is valid for sufficiently large h and is given in
the form of a series in powers of 1, Specific computing formulas are
obtained for a die of elliptic plan form.

1. Statement of problem. let a rigid die in the form of a cylin-
drical body with cross section 2 and foundation surface z* = f(x*, y*)
penetrate into an elastic layer resting on a rigid foundation (Fig. 1).
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FIG. 1.

The die is subjected to a force P acting along the z-axis, and to
moments M and M& relative to the axes of the coordinates x and y.

Let us assume that the magnitude of the force and the moments is such
that the region of contact for the die and the layer coincides with Q.
Furthermore, we assume that there are no frictional forces between the
layer and the die, as well as between the layer and the foundation, and
that outside the die the layer is not loaded. Under such assumptions
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The action of ¢ die on an elastic layer of finite thickness 463

the problem is reduced to the solution of the basic equations of the
theory of elasticity subject to the following boundary conditions:

e =0, 1ty =0, o,=0 outside the region Q for z = b (1.1)
w=—38(r, yy=—[8+ax+By—7(x, y)] in the region O (1.2)
e =0, 145 =0, w=0 for z= 0 (1.3)

Displacements and stresses vamish for (x, y) » . Here & is the dis-
placement of the die under the action of the force P, and a, 8 define
the rotation angles of the die about the y- and z- axes, respectively, due
to the moments ¥ and M_. Let us define the pressure between the layer
and the die by

g(x, y) = —o; 1in the region Q for z= h (1.4)

Note that in accordance with the physics of the problem ¢(x, y) > 0
and 8(x, y) > 0 in Q and also that the pressure g{x, y) is associated by
the known relations of statics with the force and the moments acting on
the die:

PmSSSQ(x, y)dedy, M. = Squ(x, y) dady, Myzgg‘a:q(x, y)dedy (1.5)
s} I3

Assume at first that the pressure q(x, y) between the die and the
layer is known. Then we obtain the following relationships from[1 ]
Chap. 3, Sect. 5, where the problem of compression of an elastic layer
resting on a smooth rigid foundation and subject to a distributed normal
loading p{x, y) on its upper surface is considered:

o0
- h Q (a, ﬁ) i(ax
W= s gg N7 zy (12) xRV dadf
e (v=Var 8y
o= 2 Ll e s s
W o _ (1.6)
oy = — o | LEBE g, (12) ehextidadp
": A (Yh) = 2yh 4 sh 2yh
0y = — Z \S Q gx (7?1))7 Zy(72) ¥ +BdadR

: Hex}e Qla, B) is the Fourier transform of the function p(x, y) =
bl S ) = h? 1.e.



464 V.M. Aleksandrov and I.I. Vorovich

o8
Q(x, 8)= — 7‘?;* i [02]emne o8 dudy (1.7)
2 )
Xy (’rz): e [:’rhcush 'yizssnhfyz — yzeosh yzstmmyh 4 T 2 {m -2) 1 -mh';'hj
23 (Y2) = 5~ (%’hmwhmwz — YZeomd xzmwh) (1.8)
com'zatnwh

Xy (’{Z) =z conh "{h £OShYZ me W sinh T}Z sinhyz 4

Formulas (1.6) are such that for any function Qla, 8), the first two
boundary conditions (1.1) and the boundary conditions (1.3) are satisfied,
as can be easily determined. Utilizing the third condition (1.1) and
equality (1.4), we express (1.7) in the form

Q0 8) = Sim y) et ton dady (1.9)

Finally, condition (1.2) will be satisfied if the function Qle, B) is
determined from the equation

+8

C G
— 2.__..:6. S ?A Gy T (.Yh)gt(osx‘i*ﬁv)dmd@ m= e (X, Y) 1n the region (A’—— ”‘*"”‘*mm 1)
or
% sinh? 1A 0 (o, 3)eiex+BudadB = nAd (z £
\ 5 T s ' == s y) in the region () (iiO}
24h fuinh2vh :
SS Y (2h ainh2yh)

Substituting Q{a, B) from (1.9) into (1.10), we reduce the problem to
the determination of the function g(x, y) from the integral equation of
the first kind

o 0K @—2 y—mu, hydidn— 2000 (z, 1) (1.11)
k!
where
¥y ainh2 fr}z For (ot -
K (x—E&, y—u, h)= %S T eleE—0+8u-nldadp  (1.12)

Noting that
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Y S dadp T
Koo = }imK = eilax—8)+8(y—m)] = 1.413
R, S& 27 Viz—8+ (y—n)p (1.£5)

—00

we shall express (1.11) in the form

q (€, n)dEdn -
= 2nAd (zx, -1 , K — K)dEd 1.14
N\ VesEr, =~ e v ,,EZS"(E W ( Ydidn (1-14)

where

e gypem2vh __ g 2vh

K —Kop= g% clats—D+80— dydB  (1.15)

R Y (4']’h€_2Yh + 1 — e'—4"{’L)

Having determined q(x, y) from Equation (1.14) we will find the rela-
tionships between the quantities P and 6, M_ and a, M, and B from the
relations (1.5), and the expression for the function Q{a, B) according
to Formula (1.9); then by (1.6) and the analogous formulas for u, v, o
o andr

y x
layer.

x!?

y in [1], we shall find the displacements and stresses in the

2. Transformation of kernel K - K «. Expanding the fraction
under the double integral in (1.15) into a series of powers 1~ 2k - ¢
we obtain

P—2tht—t 1 .
T = o (Ao — At A — A )

12— 2qht —t = (hyht -+ 1 —13) (Ag— Al 4 Agl® — A3 4 .. )

Equating the coefficients of equal powers of t we have

A, =0, A =14 2¢h, Ay =1 4 4yh -- 872R? 2.1
Ap = A, o 4vhA,_, n=3,4,... (2.2)

Let us denote the coefficients in 4, of (yh)* by Ay then

K

S ) (— ez N Ay (th)i (2.3)
Yela i=0

6—4*{71 — 2,7}18-—2% . e——2*{h

4The_2Yh 41— e-éyh

The coefficients A,; are determined by the relations
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Ay =0, A2r+2. 0o=1

(r+s)! s
Aar41.20= T —ar 2

o @r0)(r + 9! s s
Agri, 251 = & F D —s)! 28841 (r

. (r4+s4 1) s
Aoris, 2541 = (2s DI (r —s)! 20k

_ Cr42 s )
Asryo, 28492 = (s - 2)!; — §)! et

i

0,1,2,...,
R B )

Utilizing the expansion

0_2 O_.; im—}—namﬁn(x__s)m( -——‘r)"
gla-t+pw—nl = ¥ Y] y—n

ml n!
m=0n=0
and Formula (2.3), we will have
K—Ko=2) X Conl(z —&m(y —n) (2.5)
m==0 n=0

where

2 [o0]

=3} K
im+n S RS Y . * , N i
Coan = Tl h%,i (— 1) .2_,0 A 1 X cos"‘cpsm"cpdq)x M nig—2kyhgy (2.6)
=4 1= 0

0

Evaluating the integrals in (2.6) we will find

2n

Cg1n+1, oan = sz. 2n41 = sz+1, 2n41 0, C::m, 2n — —-——-————h2m+2n+l qu (2.7)

Here (2.8)

; &
(- 1)m+n+l (2m + 2n)! io] (— 1)k—1—1 2 y (2ne-+-2n-41)...(2m--2n+1)
9 ¥ 'y
(m + n)! m1 pt 2EmHARHL k—1 pmtentl i=0 (2k)*

o
lmn:

Substituting expressions 4,; from Formulas (2.4) and denoting m+n=p,
we reduce ['_ m/n! = Fp to

_ (=P o p (r + 5)! (2P + 29)!
P p! 2P 12 rgo{ 2[ (2+ S+‘/2> (m)!(r_s)g(,+1/2)2p+2s+1

8==0

, P (r+sL+ 01 2p+2s+ 1) (2p)! 9 9
f<2+ S+1)(23 F O (r— o)l (r + 1)2PToFE } MY } @)
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Computations yield

I'ge = — 0.5838 - 0.0001, T'yo = Toy = 0.4977 4-0.0001  (2.10)

Substituting C,, from Formulas (2.7) into (2.5), we have

x = 2m n
K—Kp=2:3 3 E=82 @—nTp @.11)

hﬁm “+on+1
M=) N

3. Solution of Equation (1.14). Substituting the expression
(2.11) into (1.14) we obtain
\ q (§, n) d&dn
ViEe—et+y—?

o

—2eb (e, ) —23 z,hmmgq«, W - (y— W didy  (3.1)

=0 =20

It is easy to show that the series (2.11) converges to K — K for any
x~&, y—-nand for h>d/ vV 2.

The convergence of the series is not deteriorated by partial integra-
tion, therefore Equation (3.1) is valid at least for

h>35 V" =maxVE—E + G— 7% (@ »)EQu(E, 1) EQ)

We shall search for q(£, ) in the form

g6 W) = Eq;(s, ) ,~ (3.2)

=0

Substituting q(f, n) from (3.2) into (3.1) and equating the terms of
like powers of h™ !, we obtain the integral equations

9o (£, m) dEdn
S v (xi. £ +(y— 7 = 2rAd (z, y) (3.3)
@€, Mdedn  _ op . .
(S! (x___E)'a + (y___.r)z - 2]‘ 00 §! do (;7 ’n) d!, d’!’z (3.4)
92 (€, ) dEdn Lo
= —2I , n)d )
§, Vi —ortw— " °°f\) a5 w)didy (3.5)

S g3 (£, m) dEdy

e = —2 \ [( —E)T'1q0 -~ Uoyge + (¥ — )T 519, dédy  (3.6)
Ve —n? §; ° * ore
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£, ) dgd . )
|y e = 2 | @ =0T+ Lags ()Tl dider (3.7
0 Q

Let us assume now that we know how to solve the problem for the die
on an elastic half-space. This means that we can obtain q,(£, n) from
Equation (3.3). Substituting into the right-hand side of Equation (3.4),
we will obtain an integral equation of the type (3.3) which consequently
yields q,(£, 3) etc.

Note that the kernel K(x — &, y — n, h) in Equation (1.11) is sym-
metric with respect to the variables x, y and £, 5. We can then general-
ize Equations (2) given in[3].

Namely, if the solution is known for the action of a flat die with
the region of contact ! on an elastic layer of finite depth, i.e. we
know the solution

gel(z, y) = 8¢5 (2, y) + aga(z, ¥) -+ g (=, ¥) (3.8)
of the equation

{ge1G K (x —E y—n, k) didn=2:2A (8 f-ax 4+ By)  (3.9)
Q

then the force and the moments acting on the die with an arbitrary found-
ation and the same region of contact ) are expressed by formlas

P = S gs (z, y) 8 (z, y)dady, My= K ga (z, y) 8 (x, y) dzdy

Q Q

M=\ gs (2, y) 8 (x, y) dady (3.10)
0
4. Solution of the problem for a flat elliptic die. Let us
solve the problem of the action of an elliptic flat die on a layer of
finite depth by means of the method presented above.*

First of all, we give the solution for the elliptic die on an elastic
hal f-space obtained by Galin (see [2 ], Chap. 2, Sect. 8) and at the
same time correct an error which occurred in this work.

Following Galin, we will write the expression for the potential of a
simple layer W(x, y, x), located on the surface of the ellipsoid p = «:

* The solution by the following method can also be obtained for a non-
plane elliptic die.
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{ & 241 ) Harmonic
Wi a=3 3 BB Eee) (o s
w :< k:O ':k—}-l1 Em Harmonic funC*\
ey D=3 D At ’kamE (1) (3) (efffg‘sé’i“&s;“: x
l k=0 m=1 vanishing at o
(4.1)

At the surface of the ellipsoid

n 2k+1

Wiz, y,z) 'pnu: Wilomx= W, ]p:x’; 2 2 AgmEy™(%) Eym (n) Ex™ (v)=
h=0 m=1
= 2:AQn (. ¥, 2) (4.2)

where Q(x, y, z) is a polynomial of order n, even on z; py, p, v are
ellipsoidal coordinates connected with right-angle relations

1222 = a%p?uv?

(1 — 13) ItyP= 0 (p"— [ (2 — 13)(I2— v9) (4.3)
(1— 52) 2= @ (¢ — 1)(1 — W)L — )
O<e<E, B<p <<, 1< piK o)

Here E,*(p) and Fk(")(p) are Lamé functions of the first and second
kind,* whereby

(4.4)

—0 for p—+ o

8

Fﬁm(p) = Ekm<p)q)km(9)’ q)hm(p S k (P) V(p — I‘Z)(? e 1)

Now let us write the expression for the demsity of the potential for
the simple layer located on the surface of the ellipsoid p = «:

a5, 9,2 = — = | (G — 5ot (4.5)

Substituting expressions ¥, and W, from (4.1) into (4.5) and trans-
forming we obtain

*

For the theory of Lamé functions see [4 ] Chap., 23; [2 ] Chap. 2,
Sects. 2, 8, 9; [ 1] Chap. 5, Sect. 8; [51 Chap. 6, Sects. 184-186,
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(4.6)
B : ") \
9@y, 9 =— (3 202 (B0 - Bre) | x
m=1 =
2 i 4y eV
ECWEN )= (5, 2 3 A BB Eino)
=0 Ma=] k
Substituting
“bkm {K)}'—_——— 1 an sz a (P*— p3)(p*—v¥)

(P*— B{p—1)
(4.7

B 0PV e—Boe—1 %

we reduce (4.6) to

n  2k41 -
. 1 a0\ Eym (p)Epm(v)
9(z,y,2) = —— D D] A“W (4.8)

4na@ V(K"—— }LS)(x'l._ vz) k=0 m==1

Let k go to unity, then z - 0 and the ellipsoid p = x degenerates
into an elliptic disc on the surface z = 0, the semiaxes of which are a
and b = a v 1 - 12, Thus, at the surface of the elliptic disc the poten-
tial ¥ becomes

n 2h-H2
Wz, y,0) =D ) AkmEx™(1)E™@)E™(v)=2rAQu(x, y, 0)=27AP(2,y)
fom) e]
(4.9)
Note that
Vi i—n=Vi—F ) 1-5-4% (4.10)

Letting, now, x go to unity in Expression (4.8) and multiplying the
result by two, we will find the density of the potential of a simple
layer located on the elliptic disc:

L& L EPOOEMWEMW)

7(@, y) = ge(1— i ) B D) Ay Ak (4.11)

k=0 m=1 [E (D))

For the particular case
Py (z, y) = & + az + By — Az*— By?

and using the theory of Lamé functions we can obtain from (4.11) and
(4.9)
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1
2 2\ g 1 1
e, )= 5 (1-%-%) ° {m [s — —3—(Aa2+Bb“)] + 412
axlt Byl®

+ K~ E) +g O—a—=BKWy
(— Aoy y— B(o;_— PN o2 (5;— 1) 2 y?
121 2 (a.i DIE (D) — (1 —9,) K (1) (5‘23', a* (o, — 12)“‘1\)}

12 _
(o,,,r_-1-4:;—i«c;r=—?,;1/1—12+1‘>

Thus, Formula (4.12) yields the solution of the equation

q (&, 7)dEdn = 27AS (x
;V(z~s)2+(y—- o =A@ y)

to which is reduced the problem of the action of a die on an elastic
half-space for the case when 8(x, y) = P,(x, y) and Q is an ellipse with
semiaxes a and b.

We pass now to the solution of the action of a flat elliptic die on
an elastic layer of finite thickness h. For a flat die f(x, y) = 0 and
8(x, y) = 8 + ax +By. Therefore, assuming A = B= 0 in Formula (4.12),
we obtain the solution of Equation (3.3):

1
_ A x2 ¥\ 2[ © axi® Byl?
gy (2, y) = ) (i“ 2 _55’) l,K ) + KH=E{D +E(£)-(1—~Z‘Z}K(l)] (4.13)

Substituting the expression obtained for g, into the right-hand side
of Equation (3.4) we will obtain

') (Er 71) dE d.q — . 2Fooa6
§, Ve—tity—n® 2eh ( Q) )

and from this, using (4.12) and assuming A = B=a = 8= 0, we will find

2Tg a3 2 2\
Q@) =— ol —F) (4.14)

Analogously, from Equation (3.5), we determine

4T go%a® A

2@ Y = yropE | (1—2 -—;,E) * (4.15)

a2

Substituting now the expressions for 99, 93, g5 into (3.6) and re-
arranging we obtain
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gs (&, n)dEdn [
§z = — &P y—m)?® 2rA [85F oz + Bay — Ay (22+ y?)]

Here
_ 2Meta%  2Migda , 5, _ 4Tyeal%a?
b =—Tgopr —akq@ @+ % = RO—FWD)]
? 41‘1()Bl2ab2 A . 21‘103(1
"= I EO—A—BR 0] =K

Using Formula (4.12) and in it letting A = B we find

1

_ 2a Ay @@ yr\T 2 2Mo®s | 2Dye8(2—1) 2T'ypal4
9:(z, y) = — (1 a bz) [ (K1 3EOP 3[K(l)01’3(1)]2
s .
Bl —1?) T'100 (— 1)'e;? (5,— 12)? .
SE)— @ —BKOE Y T K 21 e DEO—0—) KM ~

g y?
X (\E-Fm—i)J (4.16)

Analogously, from Equation (3.7) we determine

1
T2 [ 4 il (2 — 1)
o) [[K(m“r K@ T

T é (— 1Yo (5,— 12)? ” » \ 7
LRI 2 R Oy VY V) eyt gy 3 (a—%‘iﬂ‘z(oi—ﬂ)“i/ J (ete.) (4.17)

4A%T
qa(x, y) = b[K ((;;';2 (1

i=1

And so we have found the first four temms of series (3.2).

The obtained approximate expression for g(x, y) will have the form

q(z. y) = 0qs (z, y) + aga (x, y) + Bgs (z, ¥)

where

1

A x? 2\ 2 o .
45 (2, y) = m(lﬁ & ;;) LR () - S (h, 22, y?) (4.18)

Alzz A AN ,
Ga (2, y) == RO—EW)] (1 P bT) Ty (h) (4.19)

Alzy o T ,
95 (4 Y) = FEG = a = HED] <1 EZ"“ITZ) Tp(h) (4.20)
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. 9ea . [2Taa’\? [ 2Mea\? , /2Tepa \4
Rk) = 1 — 775+ (thzl) ”“( rkm) T (& @ ) -
2243 39 (2 — 12) 2 g0a 1
o 3}3801((1) [1”_;11((010)] +0(Z‘4’) (4.21)
2 \)
2 2a%T (— 1)'o? (o— I)? x2
SOt %) = =250 3 e — e R (e

a1k ] 0 ()

408112 1
Ta )=+ o o + 0 ()
4.22
Tolh m1+ 46373082 (1 — 1%) 0 1 ( )
o0 =1+ —mra—a—mrar +° ()

We will determine the relations between P and &, MJ, and ¢, ¥, and B
according to (1.5):

P 2mall
—5“2895(& y) dady = f%)“R(h)
Q
E{Q_NR ( doxdy = 2nad2A Tk 493
a«hxqaﬂhy) y=swwon—eqa " (4.23)

. . 2nad3i? {1 — 13 A
= §1|qu (xv y) dxdy = 3E O — {1 — BKD)] TB (h)

Mx
B

Rewriting, now, Formulas (3.10), and substituting g5, ¢, and 9B from
(4.18) and (4.19)

1
A ——
P = sy LR+ 2t g5 o) (1T — )y

a?
Alz 2 ¥
2\ 2
My= s —zy Ts (h)é x5 (z, y) (1 -5 — %-2«) dxdy (4.24)
1
Alz 2 2\ 2
Mx: FEM—(I =D K D] Tﬁ<h)§ ya (x'l ?f‘) <1_ & g?) dil’:dy

Formulas (4.24) permit the determination of the force and moments
acting on any non-plane elliptic die. For h = o we have R = T, = = 1,
S =0, and Formulas (4.24) become the known formulas obtained by Galin
{211 Chap. 2, Sect. 9).
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5. Derivation of computing formulas. Let us express q(x, y)

in the form
1

‘I(a"?,y):A@z"“mg“ ilayz) 2{ (A“{‘Bi“}'cgz'f'l)%—%E%?—{«
aty
P G L O oY )+

—}-ax(K + Lﬁ) +py(M+N ﬁ)+0(—,})} (5.1)
whereby
R (h) + S(h, 2%, ¢ a a? a? ax
=—rR Q) =A4+B - +Ci+ D +E45 +F +Gh« +
2 Rpy2
+H 515 (5-2)
Rk . a at ad a3 {1 — 1%}
VERKD W“A+BT+Cﬁ+Dﬁ+GiF TEgp P+
al at (1—1%)
e (5 3)
12T (h) _ ad BT (h)
VI—FK)—E @] KLy VI—BIEQ—(—DKQ] MAN
(5.4)

Here the coefficients 4, B, ..., N depend only on the eccentricity 1
of the elliptic region of contact,

The table below gives the numerical values of these eccentricities I
in the region 0 < 1* < 0.99. The intermediate values of eccentricities
l can be obtained by interpolation. After determination of the coeffi-
cients for a given value of I, the computation of stress q{(x, y) accord-
ing to (5.1) for various values of x and y in the region-a <z < g,
- b <y <b is not difficult.

The last colum of the table gives the smallest values of the ratio
h/a for which Formula (5.1) is still valid. These smallest values are
determined for the case a = 8= 0 as follows. Let us introduce the nota-
tion

» q’n( * y)
(@ y) =@ y) + 2ED LT OT (5.5)
and determine the quantities
)\x=0= Iq4(0 03-—-95(0 0)‘ 1000/ p— ]GI 100%) 5 (5.6)
y==0 (](00) A+Bh+0 3+D;3
at
— Yy G+(1~12)11190°/

ey lim LECE G0 1000, — - = =h)
y=b y-b Ly A+B&+Chz+9hs+x“

(5.7)
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aG
77| G+ H | 100%

475

Mo = lim 1€ D= L0 O 40095 — e (58)
y=0 x>a 7 & A+B+Cp+Dp+E
It is easily seen from the table that
)“x——-'a > )‘x=0v )‘x=a> )\x=0 (59)
y=0 =b y=0 Y=0
TABLE
i 1—f_7- vz A B c D E F
0 1.0 1.0 0.6366 0.4732 0.3517 0.4751 | —0.6410|—0.6410
0.1 1.1111 0.9487 | 0.6537 | 0.4734 | 0.3428 0.4508 | —0.6246| —0.6583
0.2 1.25 0.8944 | 0.6737 0.4739 | 0.3334 0.4254 | —0.60721 —0.6788
0.3 1.4286 0.8367 0.6974 | 0.4751 0.3237 0.3985 | —0.5888 | —0.7034
0.4 1.6667 0.7746 | 0.7263 | 0.4771 0.3134 | 0.3700 | —0.5691 | —0.7339
0.5 2.0 0.7071 0.7628 | 0.4803 | 0.3025 0.3393 | —0.5479| —0.7728
0.6 2.9 0.6325 | 0.8110 | 0.4857 0.2909 | 0.3057 |—0.5249 | —0.8250
0.7 3.3333 0.5477 0.8797 | 0.4949 0.2784 | 0.2680 |—0.4997 | —0.9004
0.8 5.0 0.4472 | 0.9906 | 0.5124 | 0.2651 0.2239 | —0.4720{ —1.0236
0.85 6.6667 0.3873 1.0808 | 0.5282 0.2582 0.1978 | —0.4576 | —1.1248
0.9 10.0 0.3162 1.2266 | 0.5555 | 0.2516 0.1669 | —0.4438] —1.2895
0.95 20.0 0.2236 1.5377 0.6173 0.2478 0.1261 | —0.4367 | —1.6429%
0.99/ 100.0 0.1 2.7059 | 0.8549 0.2701 0.06478 1 —0.4934| —2.9772
I ¢ H I K L M N _2
0 0.1943 —0.4765| —0.4765| 1.2732 0.4273 1.2732 0-4273 1.52
0.1 0.1794 —0.4523 | —0.4767} 1.2905 | 0.4164 1.3249 | 0.3951 1.50
0.2 0.1638 —0.42721 —0.4776 | 1.3108 0.4051 1.3860 0-3623 1.48
0.3 0.1473 —0.4011 ] —0.4792| 1.3353 0.3932 1.4597 0-3290 1.46
0.4 0.1298 —0.3738| —0.4821| 1.3657 0.3808 1.5513 0.2948 1.44
0.5 0.1142 —0.34501 —0.4867 | 1.4046 0.3677 1.6693 0.2597 1.4
0.6 0.09112 | —0.3143| —0.4941| 1.4570 0.3539 1.8293 0.2232 1.38
0.7 0.06905 |—0.2811{—0.5065| 1.5330 | 0.3393 2.0644 0.1846 1.34
0.8 0.04400 | —0.2442|—0.5295} 1.6583 0.3242 2.4604 0.1427 1.29
0.85[ 0.02965 |—0.2236|—(.5497 | 1.7619 0.3169 2.7956 0.1197 1.26
0.9 0.01311 | —0.2010( —0.5840| 1.9317 0.3114 3.3603 0.09412 1.22
0.95[ —0.008116 | —0.1753| —0.6596 | 2.2992 0.3116 4.6429 0.06353 1.18
0.99] —0.04112 | —0.1559|—0.9406| 3.6945 0.3598 |[10.1120 0.02695 1.04
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Now, the smallest permissible value of the ratio h/ea is determined
from the condition
lxshsg 596 (5~1O)
y=0
i.e. in such a way that the transfer from ¢*(x, y) to ¢*(x, y) would not
alter the quantity ¢3(x, y) by more than 5% for all (x, y)€EQ.
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